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Abstract

Track theory is combined with a realistic model of a heavy ion beam to study

the effects of nuclear fragmentation on cell survival and biological effectiveness.
The effects of secondary reaction products are studied as a function of depth

in a water column. Good agreement is found with experimental results for the

survival of human T-1 cells exposed to monoenergetic carbon, neon, and argon
beams under aerobic and hypoxic conditions. The present calculation, which

includes the effect of target fragmentation, is a significant improvement over an
earlier calculation because of the use of a vastly improved beam model with no

change in the track theory or cellular response parameters.

Introduction

The change in biological response behind the in-

creasing amount of absorbing materials for various
ion beams is of interest to the radiotherapeutic and

space radiation communities whether one studies rel-
ative biological effectiveness (RBE) for some biolog-

ical systems or average quality factors. The quality

factor as defined in ICRP 26 (ref. 1) or in ICRU 40

(ref. 2) is now considered unsuitable for the risk as-
sessment of human exposure to high-energy heavy ion

(HZE) particles (ref. 3) as in deep space missions.
Because no human data exist for cancer induction

from the HZE particles, information on biological ef-

fectiveness is expected to be taken from experiments
with animals and cultured cells (ref. 4). Experiments

with cultured cells (refs. 5-7) indicate that the RBE

of relativistic heavy ions is dependent on charge, en-

ergy, and level of fiuence. Use of a single parameter I

such as linear energy transfer (LET), to determine

radiation quality therefore represents an oversimpli-
fication for risk assessment in the galactic cosmic ray
environment.

The cellular track model of Katz et al. (refs. 8-

10) has been successful for over 20 years in describing

experiments with heavy ion exposures to mammalian
cell cultures. Cellular damage at low fluence is

described by the action cross section which is defined

as the probability that a single ion will produce a

specific biological end point. The cross section is

calculated through the application of the response

of cells to X-rays or 7-rays as a function of dose
to the radial dose from energetic electrons (&rays)

which are produced along the ion path and assumed

to cause the damage. The cross section has been

shown to depend on velocity and charge of the ions,
but not on LET alone.

In their earlier work, Katz et al. (refs. 8 and

9) developed a theory of radiobiological response to

energetic heavy ions and extracted a set of radio-
sensitivity parameters for human T-1 cells from

Todd's data (ref. 11), which were obtained with

X-rays and ions of 6.5 MeV/amu up to argon. Sub-

sequently, Blakely et al. (ref. 12) measured cell sur-

vival at several points along the beam paths of C,

Ne, and Ar ions with initial energy approximately

400 500 MeV/amu as the ions came to rest in a wa-
ter column. Katz proposed that the Blakely data

could be calculated from track theory using the ra-

diosensitivity parameters already determined pro-
vided that a beam model was available that properly

described the particle-energy spectrum at all points

along the beam line. With no other model available,
an ad hoc beam model was generated by Roth and

Katz (ref. 13) for this purpose. They compared their
calculations with T-1 cell-survival data obtained at

various locations (upstream and downstream of the

Bragg peak) of water medium irradiated with heavy
ion beams. Remarkable agreement was found except

in the region behind the Bragg peak. They attributed
the failure to the crudeness of the beam model. Cur-

tis (ref. 14) used the'HZESEC beam code to cal-

culate the depth-dose curve for various heavy ions

and obtained good agreement with the experimen-
tal data. He also characterized the radiation quality

of the beam along the beam line in tissue by con-

sidering separate contributions from projectiles and

fragments of different cell-kill modes in accordance

with the Katz theory.

In this report, we reconsider the cell-survival data

used in the previous analysis (ref. 13) by combining

a realistic beam code LBLBEAM (ref. 15) developed

at the Langley Research Center with the track theory
of Katz. The uncertainties in many of the fragmen-

tation cross sections still pose a problem in our anal-

ysis. Nevertheless, the problems encountered earlier

(ref. 13) beyond the Bragg peak have largely been
resolved..



Monoenergetic Beam Transport

In passingthroughamatter,heavyionsloseenergythroughinteractionwith atomicelectronsalongtheir
trajectories.Onoccasion,they interactwith nucleiof the matterandproduceion fragmentsmovingin the
forwarddirectionand low-energyfragmentsof the strucktargetnucleus.Thetransportequationsfor the
short-rang6targetfragmentscanbesolvedseparatelyin closedform(refs.16and17).Hence,thetransportof
projectilefragmentsconstitutesthemaintopicin thefollowingdiscussion.

With thestraight-aheadapproximation,thetransportequationmaybewrittenas(ref. 18)

o 0 )j(E) +_j] Cj(x,E) = _-_jk_ Ck(x,E)O-x OE
k>j

(1)

where Cj(x, E) is the flux of ions of charge Zj with atomic mass Aj at x moving along the x-axis at energy E in

units of MeV/amu, aj is the corresponding macroscopic nuclear absorption cross section, the stopping power

Sj(E) is the change in E per unit distance, and mjk is the fragmentation parameter for ion j produced in

collision by ion k. The range of the ion is given as

fo E dEtRj(E) = 5;j(E')
(2)

The stopping powers used herein are based on Ziegler's fits to a large data base (refs. 19 and 20) with some

necessary modifications as described elsewhere (ref. 21). The solution to equation (1) is found to be subject to

boundary specification at x = 0 and arbitrary E as

Cj (0, E) = Fj (E) (3)

where Fj (E) is called the incident beam spectrum.

From Bethe's theory we have

for which

Rj(E) : _ P_(E)

(4)

(5)

where the subscript p refers to proton. Equation (5) is quitc accurate at high energy but only approximately

true at low energy because of electron capture by the ion that effectively reduces its charge, higher order Born

corrections to Bethe's theory, and nuclear stopping at the lowest energies. Herein,. the parameter vj is defined

as

so that

2

vj ---- _ (6)

vj Rj(E)= vk Rk(E) (7)

where the energy variation in vj is neglected.

By making use of the range-energy relation (eq. (2)) and the parameters defined previously, equation (1)

can be transformed into characteristic coordinates. The transformed equation is then solved by considering

a Neumann series expansion through complicated mathematical manipulation (ref. 15). For a monoenergetic

beam if no energy spread is assumed, the boundary condition is taken as

Fj(E) = _jM _5(E - Eo) (8)



where 5jM is the Kronecker delta, 5( ) is the Dirac delta function, and Eo is the incident beam energy. The

final results for zeroth, first-, and second-order collision terms are as follows:

@0)(x,E) _ _ 1 exp(-ajx) 5jM 5[x+ Rj(E) - RM(Eo)] (9)
Sj(E)

_ 1 "J exp{ I aj[x- ¢1
Sj(E) mjMaM IVM = ujl ---2

}2 aM[X + Rj(E) + r/] (10)

as long as

Otherwise, ¢_1) (x, E) = 0.

¢_2) (x, E) =

VM
VM [RM(Eo) -- x] < Rj(E) < -- RM(Eo ) - x
vj vj

aJkZk__MVj [exp(--aMXM l -- akxkl -- ajXjl )

k

-- exp(--aMxMu -- akxku -- CrjXju)]

(11)

(12)

where [ (v k - vj) (VM - vJ)ak] (13)
Ajk M = aj + L_-- _kk)aM (VM Vk) J

and XMu, Xku, XMl, and xkl are the values of the following equations evaluated at the corresponding upper

and lower limits of x j:

XM = vM RM(E°) - Vk[Rk(E) + x] + (v k - vj)xj (14)
v M -- v k

Xk = VM[RM(E ) + x] -- v M RM(Eo ) -- (v M - vj)xj (15)
v M -- v k

As has been shown in reference 15, total flux summing up to the secondary collision term is sufficiently accurate

in most cases.

Similar results have been derived (ref. 15) for a more realistic situation where the energy spread in the

incident beam is considered by modifying equation (8). In this report, however, we are assuming no energy

spread in the beam for simplicity.

The variation in the secondary spectra with depth in a water column as predicted in reference 15 by

LBLBEAM (eqs. (9)-(15)) is presented in figure i where the flux of all secondaries with charges from 3 to

10 ions is plotted versus energy for a 396-MeV/amu 2°Ne beam at three positions in the Bragg curve. The

secondary spectrum at 10 g/cm 2 before reaching the Bragg peak is shown in figure l(a). Ions close to the beam

in charge are seen to dominate with a rather narrow energy spectra centered close to the beam energy. In

figures l(b) and l(e) at 4 g/cm 2 before and 2 g/cm 2 beyond the Bragg peak, respectively, many ion types are

seen to be important with broad energy distributions. Not shown are the charges of 1 and 2 ions that are found

to make only a small contribution to biological effects in the present study. In reference 22, theoretical results

using LBLBEAM are compared with experimental measurements for secondary spectra from a 670-MeV/amu

beam.

Cellular Track Model

Biological damage from heavy ions is principally caused by 5-ray production. In the Katz model (ref. 8),

cellular damage proceeds through two modes of response. In the ion-kill mode, damage occurs through the

3



actionof singleions,whereasin the gamma-killmode,cellsnot inactivatedin the ion-kill modecanbe
sublethallydamagedfroma passingionandthen inactivatedby thecumulativeadditionofsublethaldamage
ducto 6-rays from other passing ions. The response of the cell is described by four cellular response parameters,

two of which (m, the number of targets that must be inactivated per cell, and Do, tile characteristic X-ray dose)

are extracted from the response of the system to X-ray or v-ray irradiation. The other two parameters (_o,

interpreted as the cross-sectional area of the cell nucleus, within which the damage sites are located, and _,

a measure of the size of the damage site) are found from survival measurements with a set of track segment

irradiations by energetic charged particles. The surviving fraction of a cellular population (No), after irradiation

by a fluence of particles iF), is written as (ref. 8)

N

No rri × rr_ (16)

where the ion-kill survivability is
--crF

7["i =e

and tile gamma-kill survivability is

7r7= 1- (1--e-D'_/D°) m

The gamma-kill dose fraction is defined by

(17)

(18)

D r = (1 - P)D (19)

where D is the absorbed dose and P is tile fraction of cells damaged in the ion-kill mode given by

o"
P = -- (20)

O-o

where _r is the single-particle inactivation cross section. The ion-kill cross section is found from

o'(E) = ao (1- e-Z*2/_fl2) rn (21)

where the effective charge number is Z = Z(1 - e-125fl/Z2/3). For the mixed-radiation fields of projectile

fragments produced in a water medium, the ion-kill term is written as (ref. 23)

crF = __, dEj Cj(x, Ej) a(Ej)

J

+ _ dEj dEa ¢_(x, E_; Ej) oc_(Ec_)
(22)

where Ej is thc energy of ion j in MeV, the subscripts j and a label the projectile fragment and target

fragment, respectively, and ¢ is the fluence of particles of a particular type with energy E at position x. Thcn,

on the right-hand side of equation (22), the first term corresponds to the contributions from projectile and

projectile-fragment particles, and the second term to the contributions from target fragments.

Tile gamma-kill dose fraction becomes

D,_ = _ / dEj Cj(x, Ej)[1- Pj(Ej)] Sj(Ej)
3

+ f des co(s, Ej)
j

× P.(E.)]S.(E.) (23)



whereSj is the stopping power of ion j. Equations (22) and (23) are used in equations (17) and (18),

respectively. The summations over all particle types in equations (22) and (23) represent the addition of

probabilities from all ions in the radiation field that contribute to the end point under study.

The RBE at a given survival level is given by

02:

RBE- D (24)

Dx=-Do in 1- 1- Noo (25)

where

is the X-ray dose at which this level is obtained. At low doses in which intertrack effects are negligible, the

RBE reduces to (ref. 24)

1/mD(1/m-1 )
/\0"

RBE
= Do (_ET) (26)

Results and Discussion

Survival curves for aerobically and hypoxically
irradiated human T-1 kidney cells have been cal-
culated for several locations in a water column for

carbon, neon, and argon beams which represent a

wide range of LET. These curves are compared with

the experimental data of BlakeIy et al. (ref. 12) for

various doses, as shown in figures 2-4 where x rep-
resents the distance from the Bragg peak with pos-

itive values indicating upstream locations and neg-

ative values indicating downstream locations. The
cellular response parameters used in the calculation

were obtained from experiments of Todd (ref. 11) as
given in table 1 where the values enclosed in paren-

theses were suggested by Roth and Katz (ref. 13)
for a higher degree of hypoxia achieved in Blakely's

experiment. Better agreement is obtained with the

suggested new parameters. Also, the discrepancy is
lessened when compared with the results obtained

by Roth and Katz (ref. 13) for the locations beyond

the Bragg peak. Some remaining slight discrepancy
is justifiable if one considers the large uncertainties

that exist in the knowledge of nuclear fragmentation

parameters, the assumption of energy-independent

cross sections, and the negligence of straggling and
multiple scattering in the beam model. Trial calcula-

tions made with the addition of tertiary fragments or

the inclusion of beam energy'spread did not improve
the situation.

The fragmentation cross sections used in the

present beam model are from Silberberg, Tsao, and

Shapiro (ref. 25) for the heavy ions and from Bertini

(ref. 26) for the light ions. A previous study (ref. 27)

showed that Silberberg, Tsao, and Shapiro under-

predicted the heavier fragments. In calculating the

depth-dose curve for an argon beam, some correction

factors were used to compensate for the underpredic-
tion, and these correction factors are given in table 2.

In figure 5, two separate depth-dose calculations with

and without correction factors are compared with the

experimental results. Better agreement is obtained

with the correction factor included. (Note that the
calculated Bragg peak is higher than the data be-

cause no energy spread was assumed.)

Table 1. Cellular Response Parameters a for Human T-1 Cells

Cell-death type
Aerobic ....

Hypoxic ....

Values for response parameters -

1 Do, cGY

rn (b)
2 5 170

460

(520)

6.7x 10 .7 I 1000

6.7x 10.7 I 1300
: ](1450)

aThese parameters were originally obtained by Katz et al.
(ref. 8) from the data of Todd (ref. 11).

bThe values enclosed in parentheses were suggested by
Roth and Katz (ref. 13).

The RBE as a function of survival level has also

been calculated for aerobically and hypoxically irra-

diated T-1 cells in a water column exposed to a neon

beam. These results are compared in figure 6 with

the data of Blakely et al. (ref. 12) for three loca-

tions (the distances from thc Bragg peak (x) of 16.1,

1.2, and 0.14 cm, with positive values indicating up-
stream locations). The agreement is excellent except

for the hypoxic cell at 1.2 cm upstream of the Bragg
peak where the data are uniformly lower than the

5



theory. The ion beam is seen to be more biologically

damaging at locations closer to the Bragg peak. The

steep rise in RBE near the zero-dose region for the lo-

cation near the Bragg peak is due to the dominance of

the ion-kill mode for the neon beam and the sigmoid

behavior of the X-ray as described by equation (26).

On the other hand, the sigmoid behavior of the sur-

vival curve for neon at the most upstream location

counteracts that of the X-ray, and therefore it results

in a flatter slope of RBE near the zero-dose region.

This sigmoid shape is due to the effect of overlapping

&rays which is dominant over the ion-kill mode.

Table 2. Correction Factors to Nuclear Fragmentation

Model of Reference 25

AA

(a)

0

1

2

3

4

5

Correction

factor

1.3

1.2

1.1

aAA denotes the number of nucleons removed.

Concluding Remarks

Using a realistic transport model, we can

successfully predict cell-survival levels for several lo-

cations along the heavy ion beam line within a water

column. Theoretical relative biological effectiveness

(RBE) curves as a function of survival level are also

in excellent agreement with the data. Further im-

provement in the depth-dose curve calculation can

be made when fragmentation parameters that are

more accurate become available. The broadness of

the Bragg peak can be predicted if we consider the

energy spread of the primary beam and the effect of

straggling. The results support the claim of track

theory that knowledge of radiosensitivity parame-

ters for cell survival coupled with knowledge of the

particle-energy spectrum of a complex radiation field

make it possible to predict cell survival and RBE in

that field. \Ve have done so here over a wide range

of linear energy transfer (LET) for various doses.

NASA Langley Research Center

Hampton, VA 23681-0001

June 17, 1993
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Figure 4. Survival level as a function of dose for aerobically and hypoxically irradiated human T-1 cells in
water column exposed to 514-MeV/amu argon beam. x denotes distance from Bragg peak, with positive
values indicating upstream locations.
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